Принцип работы металлоискателя схема: Принцип работы металлоискателя — Официальные металлоискатели Украины

Содержание

Принцип работы металлоискателя — Официальные металлоискатели Украины

Ноя 2,2019 By admin

Чтобы найти клад, приобрести хороший металлоискатель недостаточно. Нужно научиться им пользоваться. Для этого придется разобраться с принципом действия инструмента. Обратите внимание: не все модели — универсальны. Большинство детекторов предназначаются для обнаружения только определенных групп металлов.

Лучший друг копателя — брендовый инструмент. Предпочтение стоит отдать металлоискателю от Fisher, Garrett, Minelab или XP. Оборудование от этих фирм характеризуется высоким качеством и предназначается для поиска металлов, монет и драгоценностей в нейтральной среде.

Как работает металлоискатель

Большинство детекторов работают по одному принципу. Рассмотрим особенности металлоискателя на примере Garrett ACE 150. Основу конструкции составляют 2 штанги, блок управления, катушка, разъемы для нее, отсек для аккумуляторов. Верхняя штанга оборудована рукояткой и подлокотником.

Обнаруживать металлические изделия в земле позволяет электропроводность. Детектор работает по следующему принципу: катушка генерирует электромагнитные волны определенной частоты, которые отражаются от искомой цели. Электронный блок обрабатывает отраженную волну и сигнализирует об обнаружении металлического предмета. Помните: не все металлы имеют одинаковую электропроводность. Этот параметр позволяет понять, из какого материала изготовлен предмет, еще до выкапывания.

Виды металлодетекторов

Производители металлоискателей (например, XP, Minelab, Garrett) выпускают инструменты разных видов. Так, оборудование отличается чувствительностью, рабочей частотой, глубиной поиска. Выбору доступны как простейшие модели, предназначенные для обнаружения металлических изделий в земле, так и сложные приборы, заточенные под конкретные задачи.

В зависимости от схемы металлоискатели делятся на 4 вида:

  • Импульсные — подходят для поиска разных металлов. Оборудованы катушкой, электромагнитное поле которой создает вихревые токи на поверхности металлического изделия. Удобны для работы с засоленными грунтами.
  • Генераторные — предназначаются для обнаружения конкретного металла. Оснащаются LC-генератором.
  • Приборы типа «прием-передача» — позволяют работать с различными видами почв. Оснащаются двумя катушками — передающей и поисковой. Первая излучает сигнал, вторая — принимает. В эту группу входят в основном детекторы среднего ценового сегмента.
  • Индукционные — от предыдущего вида отличаются наличием одной катушки, которая и принимает, и посылает сигнал. Высокое содержание солей в почве может вызвать помехи в работе металлодетектора. Чтобы оборудование корректно функционировало, его нужно настраивать.

Важные технические параметры

Выбирая детектор, в первую очередь обращайте внимание на рабочую частоту, чувствительность и дискриминатор. От этих параметров зависят возможности устройства. Так, частота влияет на глубину поиска и размер искомого предмета. Чем ниже этот показатель, тем глубже можно копать. Приобрести низкочастотную модель стоит для обнаружения крупной цели. Чтобы искать мелкие изделия, выбирайте устройство с высокой частотой.

Приборы начального уровня, как правило, функционируют с одной частотой. А вот полупрофессиональные металлоискатели — например, Minelab X-Terra 705 — применяют целых 3, что позволяет обнаруживать предметы разных размеров на разной глубине. Максимальная глубина поиска также зависит от чувствительности. Дискриминатор дает прибору возможность реагировать только на определенный вид металла.

Tags: металлоискатель

Читать еще

Металлоискатель своими руками — 12 принципиальных схем

Металлоискатель своими руками — как это следует из самого названия, такие устройства изготавливаются самостоятельно и предназначены для поиска металлических предметов, используются по достаточно узкому назначению. Однако способы их реализации достаточно разнообразны и составляют целое направление в радиоэлектронике.

Металлоискатель Н. Мартынюка

Металлоискатель по схеме Н. Мартынюка (рис. 1) выполнен на основе миниатюрного радиопередатчика, излучение которого модулировано звуковым сигналом [Рл 8/97-30]. Модулятор — низкочастотный генератор выполнен по хорошо известной схеме симметричного мультивибратора.

Сигнал с коллектора одного из транзисторов мультивибратора подается на базу транзистора высокочастотного генератора (VT3). Рабочая частота генератора располагается в области частот УКВ-ЧМ радиовещательного диапазона (64… 108 МГц). В качестве катушки индуктивности колебательного контура использован отрезок телевизионного кабеля в виде витка диаметром 15.. .25 см.

Рис. 1. Принципиальная схема металлоискателя Н. Мартынюка.

Если к катушке индуктивности колебательного контура приблизить металлический предмет, частота генерации заметно изменится. Чем ближе поднесен предмет к катушке, тем больше будет уход частоты. Для регистрации изменения частоты используется обычный ЧМ-радиоприемник, настроенный на частоту ВЧ генератора.

Систему автоподстройки частоты приемника следует отключить. В отсутствие металлического предмета из громкоговорителя приемника слышен громкий звуковой сигнал.

Если к катушке индуктивности поднести кусок металла, то частота генерации изменится, а громкость сигнала снизится. Недостатком устройства является его реакция не только на металлические, но и на любые другие токопроводящие предметы.

Металлоискатель на основе низкочастотного LC-генератора

На рис. 2 — 4 показана схема металлоискателя с другим принципом действия, основанным на использовании низкочастотного LC-генератора и мостового индикатора изменения частоты. Поисковая катушка металлоискателя выполнена в соответствии с рис. 2, 3 (с коррекцией числа витков).

Рис. 2. Поисковая катушка металлоискателя.

Рис. 3. Поисковая катушка металлоискателя.

Выходной сигнал с генератора поступает на мостовую измерительную схему. В качестве нуль-индикатора моста использован высокоомный телефонный капсюль ТОН-1 или ТОН-2, который можно заменить стрелочным или иным внешним измерительным прибором переменного тока. Генератор работает на частоте f1, например, 800 Гц.

Мост перед началом работы балансируют на нуль подстройкой конденсатора С* колебательного контура поисковой катушки. Частоту f2=f1, при которой мост будет сбалансирован, можно определить из выражения:

Изначально в телефонном капсюле звук отсутствует. При внесении в поле поисковой катушки L1 металлического предмета, частота генерации f1 изменится, произойдет разбалансировка моста, в телефонном капсюле будет слышен звуковой сигнал.

Рис. 4. Схема металлоискателя с принципом действия, основанным на использовании низкочастотного LC-генератора.

Мостовая схема металлоискателя

Мостовая схема металлоискателя с использованием поисковой катушки, изменяющей свою индуктивность при приближении металлических предметов, представлена на рис. 5. На мост подается сигнал звуковой частоты от низкочастотного генератора. Потенциометром R1 мост балансируют на отсутствие звукового сигнала в телефонном капсюле.

Рис. 5. Мостовая схема металлоискателя.

Для повышения чувствительности схемы и повышения амплитуды сигнала разбаланса моста к его диагонали может быть подключен усилитель низкой частоты. Индуктивность катушки L2 должна быть сопоставима с индуктивностью поисковой катушки L1.

Металоискатель на основе приемника с СВ диапазоном

Металлоискатель, работающий совместно с радиовещательным супергетеродинным радиоприемником средневолнового диапазона, можно собрать по схеме, показанной на рис. 6 [Р 10/69-48]. В качестве поисковой катушки может быть использована конструкция, изображенная на рис. 2.

Рис. 6. Металлоискатель, работающий совместно с супергетеродинным радиоприемником СВ-диапазона.

Устройство представляет собой обычный генератор высокой частоты, работающий на частоте 465 кГц (промежуточная частота любого АМ-радиовещательного приемника). В качестве генератора можно использовать схемы, представленные в главе 12.

В исходном состоянии частота генератора ВЧ, смешиваясь в близкорасположенном радиоприемнике с промежуточной частотой принимаемого приемником сигнала, приводит к образованию сигнала разностной частоты звукового диапазона. При изменении частоты генерации (при наличии в поле действия поисковой катушки металла), тональность звукового сигнала меняется пропорционально количеству (объему) металлического предмета, его удалению, природе металла (одни металлы повышают частоту генерации, другие, напротив, понижают).

Простой металлоискатель на двух транзисторах

Рис. 7. Схема простого металлоискателя на кремниевом и полевом транзисторах.

Схема простого металлоискателя представлена на рис. 7. В устройстве использован низкочастотный LC-генера-тор, частота которого зависит от индуктивности поисковой катушки L1. При наличии металлического предмета частота генерации изменяется, что можно услышать с помощью телефонного капсюля BF1. Чувствительность такой схемы невысока, т.к. на слух определять малые изменения частоты достаточно сложно.

Металлоискатель малых количеств магнитного материала

Металлоискатель малых количеств магнитного материала может быть выполнен по схеме на рис. 8. В качестве датчика такого устройства использована универсальная головка от магнитофона. Для усиления слабых сигналов, снимаемых с датчика, необходимо использовать высокочувствительный усилитель низкой частоты, выходной сигнал которого поступает на телефонный капсюль.

Рис. 8. Схема металлоискателя малых количеств магнитного материала.

Схема индикатора металла

Иной метод индикации наличия металла использован в устройстве по схеме на рис.9. Устройство содержит высокочастотный генератор с поисковой катушкой индуктивности и работает на частоте f1. Для индикации величины сигнала использован простейший высокочастотный милливольтметр.

Рис. 9. Принципиальная схема индикатора металла.

Он выполнен на диоде VD1, транзисторе VT1, конденсаторе С1 и миллиамперметре (микроамперметре) РА1. Между выходом генератора и входом высокочастотного милливольтметра включен кварцевый резонатор. Если частота генерации f1 и частота кварцевого резонатора f2 совпадают, стрелка прибора будет на нуле. Стоит частоте генерации измениться в результате внесения металлического предмета в поле поисковой катушки, стрелка прибора отклонится.

Рабочие частоты таких металлоискателей обычно находятся в диапазоне 0,1…2 МГц. Для начальной установки частоты генерации этого и других приборов подобного назначения используют конденсатор переменной емкости или подстроечный конденсатор, подключенный параллельно поисковой катушке индуктивности.

Типовый металлоискатель с двумя генераторами

На рис. 10 приведена типовая схема самого распространенного металлоискателя. Его принцип действия основан на биениях частот эталонного и поискового генераторов.

Рис. 10. Схема металоискателя с двумя генераторами.

Рис. 11. Принципиальная схема блока-генератора для металлоискателя.

Однотипный узел, общий для обоих генераторов, показан на рис. 11. Генератор выполнен по общеизвестной схеме «емкостной трехточки». На рис. 10 показана полная схема устройства. В качестве поисковой катушки L1 применяется конструкция, представленная на рис. 2 и 3.

Начальные частоты генераторов должны быть одинаковы. Выходные сигналы с генераторов через конденсаторы С2, СЗ (рис. 10) подаются на смеситель, выделяющий разностную частоту. Выделенный звуковой сигнал через усилительный каскад на транзисторе VT1 поступает на телефонный капсюль BF1.

Металлоискатель на принципе срыва частоты генерации

Металлоискатель может работать и на принципе срыва частоты генерации. Схема такого устройства изображена на рис.12. При выполнении определенных условий (частота кварцевого резонатора равна резонансной частоте колебательного LC-контура с поисковой катушкой) ток в цепи эмиттера транзистора VT1 минимален.

Если резонансная частота LC-контура заметно изменится, то генерация сорвется, а показания прибора значительно возрастут. Параллельно измерительному прибору рекомендуется подключить конденсатор емкостью 1 …100 нФ.

Рис. 12. Схема металлоискателя что работает на принципе срыва частоты генерации.

Металлодетекторы для поиска мелких предметов

Искатели металла, предназначенные для поиска небольших металлических предметов в быту, могут быть собраны по представленным на рис. 13 — 15 схемам.

Такие металлоискатели работают также на принципе срыва генерации: генератор, в состав которого входит поисковая катушка индуктивности, работает в «критическом» режиме.

Режим работы генератора установлен подстроенными элементами (потенциометрами) так, что малейшее изменение условий его работы, например, изменение индуктивности поисковой катушки, приведет к срыву колебаний. Для индикации наличия/отсутствия генерации использованы светодиодные индикаторы уровня (наличия) переменного напряжения.

Катушки индуктивности L1 и L2 в схеме на рис. 13 содержат, соответственно, 50 и 80 витков провода диаметром 0,7…0,75 мм [Fs 8/75]. Катушки намотаны на ферритовом сердечнике 600НН диаметром 10 мм и длиной 100… 140 мм. Рабочая частота генератора около 150 кГц.

Рис. 13. Схема простого металлоискателя на трех транзисторах.

 

Рис. 14. Схема простого металлоискателя на четырех транзисторах со световой индикацией.

Катушки индуктивности L1 и L2 другой схемы (рис. 14), выполненной в соответствии с патентом ФРГ(№ 2027408, 1974 г.), имеют 120 и 45 витков, соответственно, при диаметре провода 0,3 мм [Р 7/80-61]. Использован ферритовый сердечник 400НН или 600НН диаметром 8 мм и длиной 120 мм.

Бытовой искатель металла

Бытовой искатель металла (БИМ) (рис. 15), выпускавшийся ранее заводом «Радиоприбор» (г. Москва), позволяет обнаружить мелкие металлические предметы на удалении до 45 мм. Намоточные данные его катушек индуктивности неизвестны, однако при повторении схемы можно ориентироваться на данные, приводимые для приборов аналогичного назначения (рис. 13 и 14).

Рис. 15. Схема бытового искателя металла.

 

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Как работают металлодетекторы | База знаний

Как работают металлодетекторы

Основные принципы

Как работают металлодетекторы?

Металлоискатели работают за счет передачи электромагнитного поля от поисковой катушки в землю. Любые металлические объекты (мишени) в пределах электромагнитного поля будут получать энергию и ретранслировать собственное электромагнитное поле. Поисковая катушка детектора принимает ретранслируемое поле и предупреждает пользователя, формируя целевой отклик. Металлоискатели Minelab способны различать различные типы целей и могут быть настроены на игнорирование нежелательных целей.

1. Блок управления

Блок управления содержит электронику детектора. Здесь генерируется сигнал передачи, а сигнал приема обрабатывается и преобразуется в целевой ответ.

2. Поисковая катушка

Поисковая катушка детектора передает электромагнитное поле в землю и принимает обратное электромагнитное поле от цели.

3. Передающее электромагнитное поле   (только визуальное представление — синий цвет)

Передаваемое электромагнитное поле заряжает цели, чтобы их можно было обнаружить.

4. Мишень

Мишень – это любой металлический предмет, который может быть обнаружен металлоискателем. В этом примере обнаруженной целью является сокровище, которое является хорошей (принятой) целью.

5. Нежелательная цель

Нежелательные цели, как правило, состоят из железа (притягиваются к магниту), например, гвозди, но могут быть и из цветного металла, например, крышки от бутылок. Если металлоискатель настроен на отклонение нежелательных целей, то для этих целей не будет генерироваться целевой отклик.

6. Прием электромагнитного поля   (только визуальное представление — желтый)

Прием электромагнитного поля генерируется от целей под напряжением и принимается поисковой катушкой.

7. Отклик цели   (только визуальное представление — зеленый)

При обнаружении хорошей (принятой) цели металлодетектор издает звуковой ответ, например, звуковой сигнал или изменение тона. Многие детекторы Minelab также обеспечивают визуальное отображение информации о цели, такой как идентификационный номер или двухмерный дисплей.


 

Основные принципы обнаружения

Частота
Частота металлоискателя — одна из основных характеристик, определяющих, насколько хорошо можно обнаруживать цели. Как правило, одночастотный детектор, передающий на высокой частоте, будет более чувствителен к небольшим целям, а одночастотный детектор, передающий на низких частотах, даст большую глубину обнаружения больших целей. Одночастотные технологии Minelab — это VLF и VFLEX.

Ведущие в мире технологии Minelab BBS, FBS, MPS и новые революционные технологии Multi-IQ передают данные на нескольких частотах одновременно и поэтому одновременно чувствительны к мелким и глубоко расположенным крупным целям.

Балансировка грунта
Балансировка грунта — это переменная настройка, которая увеличивает глубину обнаружения в минерализованном грунте. Этот грунт может содержать соли, например, во влажном пляжном песке, или мелкие частицы железа, например, в красной земле. Эти минералы реагируют на передающее поле детектора так же, как и цель. Из-за гораздо большей массы грунта по сравнению с заглубленной целью эффект минерализации может легко маскировать мелкие цели. Чтобы исправить это, настройка «Баланс грунта» удаляет ответные сигналы грунта, поэтому вы четко слышите сигналы цели и не отвлекаетесь на шум грунта.

Существует три основных типа балансировки грунта:

1. Балансировка грунта вручную  – вручную отрегулируйте настройку балансировки грунта, чтобы было слышно минимальное количество сигнала грунта.

2. Автоматическая балансировка грунта  — Детектор автоматически определяет наилучшую настройку балансировки грунта. Это быстро, просто и более точно, чем ручная настройка балансировки грунта.

3. Отслеживание баланса грунта  — Металлоискатель постоянно регулирует настройку баланса грунта во время поиска.

Это гарантирует, что настройка баланса грунта всегда будет правильной.

Детекторы Minelab используют эксклюзивные передовые технологии для превосходной балансировки грунта, с которыми не могут сравниться никакие другие металлоискатели.

Дискриминация
Дискриминация — это способность металлоискателя идентифицировать закопанные цели на основе их проводящих и/или железистых свойств. Точно идентифицируя закопанную цель, вы можете решить выкопать ее или считать хламом и продолжить поиск. Детекторы Minelab выдают номера идентификации цели (Target ID) и/или звуковые сигналы цели, чтобы указать тип обнаруженной цели.

В детекторах Minelab существует четыре основных типа дискриминации:

1. Переменная дискриминация  – Самый простой тип дискриминации, в котором используется ручка управления для регулировки уровня дискриминации.

2. Iron Mask/Iron Reject  — используется в основном с детекторами поиска золота, чтобы игнорировать железный хлам.

3. Дискриминация надрезов  – позволяет принимать или отклонять определенные типы целей.

4. Smartfind  — Самая продвинутая форма дискриминации. Идентификаторы целей нанесены на двухмерном (2D) дисплее на основе как свойств железа, так и проводящих свойств. Отдельные сегменты или большие области дисплея могут быть затемнены, чтобы отклонить нежелательные цели.


 

Факторы глубины обнаружения

Самый распространенный вопрос о металлоискателях: «На какую глубину они проникают?»

Простой ответ: «на глубину, равную диаметру катушки». Таким образом, детекторы с большими катушками будут обнаруживать глубже.

Однако глубина обнаружения также зависит от технологии детектора и многих факторов окружающей среды. Более сложный ответ обычно начинается с «Это зависит от…». Глубина, на которой металлоискатель может обнаружить цель, зависит от ряда факторов:

 

Размер цели

Большие цели могут быть обнаружены глубже, чем маленькие цели.

Форма мишени

Круглые формы, такие как монеты и кольца, можно обнаружить глубже, чем длинные тонкие формы, такие как гвозди.

Ориентация на цель

Горизонтальная монета (например, лежащая плашмя) может быть обнаружена глубже, чем вертикальная монета (например, на ребре).

Материал мишени

Металлы с высокой проводимостью (например, серебро) можно обнаружить глубже, чем металлы с низкой проводимостью (например, свинец или золото).

 

MULTI-IQ: ВСЕ МЕТАЛЛЫ, ВСЕ ПОЧВЫ, ВСЕ ВРЕМЯ

Представляем Multi-IQ

Multi-IQ — это последняя крупная технологическая инновация Minelab, которая может рассматриваться как сочетающая в себе преимущества производительности как FBS, так и VFLEX в новом слияние технологий. Это не просто переработка одночастотного VLF и не просто другое название для итерации BBS/FBS.

Multi-IQ достигает высокого уровня точности идентификатора цели   на глубине  , что намного лучше, чем может достичь любой одночастотный детектор, включая переключаемые одночастотные детекторы, которые претендуют на то, чтобы быть многочастотными. Когда компания Minelab использует термин «многочастотный», мы имеем в виду «одновременный», т.е. одновременно передается, принимается и обрабатывается более одной частоты. Это обеспечивает максимальную чувствительность к целям всех типов и размеров при минимизации шума грунта (особенно в соленой воде). В настоящее время существует лишь несколько детекторов от Minelab и других производителей, которые можно отнести к категории настоящих многочастотных детекторов, каждый из которых имеет свои преимущества и недостатки.

Чем Multi-IQ отличается от BBS/FBS?

Multi-IQ использует группу основных частот, отличную от BBS/FBS, для генерации широкополосного многочастотного сигнала передачи, который более чувствителен к высокочастотным целям и немного менее чувствителен к низкочастотным целям. Multi-IQ использует новейшие высокоскоростные процессоры и передовые методы цифровой фильтрации для гораздо более высокой скорости восстановления, чем технологии BBS/FBS. Multi-IQ работает в соленой воде и на пляже почти так же хорошо, как BBS/FBS, однако BBS/FBS по-прежнему имеет преимущество в поиске серебряных монет с высокой проводимостью в любых условиях.

С помощью Multi-IQ мы можем добиться гораздо большей точности идентификации целей и повышения производительности обнаружения, особенно на «сложном» грунте. В «мягком» грунте одна частота может работать адекватно, НО глубина и стабильные идентификаторы будут ограничены шумом грунта; тогда как одновременная многочастотность Multi-IQ позволит достичь максимальной глубины с очень стабильным сигналом от цели. В «сильном» грунте одна частота не сможет эффективно отделить целевой сигнал, что приведет к снижению результатов; тогда как Multi-IQ по-прежнему будет обнаруживать на глубине, теряя минимальную точность цели, как показано на этой диаграмме.


«Сколько одновременных частот?»  спросите вы, задаваясь вопросом, является ли это критическим параметром. В последние годы компания Minelab проводила подробные исследования по этому поводу. Точно так же, как вы можете раскрасить карту разными цветами, минимальное число, позволяющее различать соседние страны, — всего четыре. Как и в случае с картой, возможно, не максимальное количество частот, необходимое для достижения оптимального результата, а минимальное число, которое более интересно. Когда дело доходит до частот в детекторе, как частоты в сочетании И обработано теперь важнее, чем количество частот, для достижения еще лучших результатов.


Диапазон частот Multi-IQ, показанный на этой диаграмме , относится как к детекторам серии EQUINOX, так и к детекторам серии VANQUISH во всех моделях. Между отдельными одиночными частотами, показанными на диаграмме, и частотами, используемыми в Multi-IQ, нет прямой связи.

На приведенной выше диаграмме показан типичный диапазон чувствительности одночастотных детекторов по сравнению с чувствительностью полного спектра, обеспечиваемой Multi-IQ. В то время как детектор, работающий на частоте 5 кГц, будет чувствителен к высоким проводникам, таким как большие серебряные мишени, этот же детектор будет особенно невосприимчив к маленьким золотым самородкам (низкие проводники). И наоборот, детектор, работающий на частоте 40 кГц, имеет высокую чувствительность к мелкому золоту и значительно меньшую чувствительность к крупному серебру. Multi-IQ обладает высокой чувствительностью ко всем целям во всем диапазоне частот.

Как работают металлодетекторы — Объясните это Stuff

Бип-бип! Бип-бип! Есть ли что-нибудь более захватывающее, чем обнаружение сокровищ? Миллионы людей во всем мире имеют весело использовать металлоискатели, чтобы обнаружить ценные реликвии похоронены метро. Точно такая же технология работает в нашей армии. и службы безопасности, помогая сохранять мир в безопасности, раскрывая ружья, ножи и закопанные мины. Металлоискатели основаны на наука об электромагнетизме. Давайте узнаем, как они работают!

Фото: морской пехотинец США с помощью металлодетектора осматривает придорожные шины в поисках спрятанной взрывчатки. Фото предоставлено Министерством обороны США и Wikimedia Commons.

Содержание

  1. Когда магнетизм встретился с электричеством
  2. Как электромагнетизм питает металлоискатель
  3. Как работают металлодетекторы
  4. Какие существуют типы металлодетекторов?
  5. На какую глубину может проникнуть металлоискатель?
  6. Где используются металлодетекторы?
  7. Кто изобрел металлоискатели?
  8. А как насчет неметаллических детекторов ?
  9. Узнать больше

Когда магнетизм встретился с электричеством

Если вы когда-нибудь делали электромагнит, намотав катушку из проволоки вокруг гвоздя и подключив его к батарее, вы узнаете, что магнетизм и электричество подобны пожилая супружеская пара: когда бы вы ни нашли одного, вы всегда найдете другого, не очень далеко.

Мы находим практическое применение этой идее каждую минуту каждого дня. Каждый раз, когда мы используем электроприбор, мы полагаемся на близкое Связь между электричеством и магнетизмом. Электричество, которое мы используем поступает от электростанций (или, все чаще из возобновляемых источников как ветряные турбины) и это сделано генератор, который на самом деле просто большой барабан с медной проволокой. Когда провод вращается с большой скоростью через магнитное поле внутри него «волшебным образом» генерируется электричество — и мы можем использовать эту силу в наших собственных целях. Электрические приборы используем (во всем, от стирки машины к пылесосам) содержат электродвигатели, которые работают в точности противоположным образом. генераторы: по мере того, как электричество поступает в них, оно генерирует изменяющееся магнитное поле в катушке провода, которое давит на поле постоянный магнит, и это то, что заставляет двигатель вращаться. (Ты можешь найти подробнее об этом в нашей статье об электродвигателях. )

Фото: гениальный физик Джеймс Клерк Максвелл. Фото из общественного достояния предоставлено Wikimedia Commons.

Короче говоря, вы можете использовать электричество для создания магнетизма и магнетизма производить электричество. Фантастически умный шотландский физик по имени Джеймс Клерк Максвелл (1831–1879) подытожил все это в 1860-х годах. когда он выписал четыре обманчиво простые математические формулы (теперь известные как уравнения Максвелла). Один из них говорит, что всякий раз, когда есть изменяющееся электрическое поле, вы также получаете изменяющееся магнитное поле. Другой говорит, что когда есть изменяющееся магнитное поле, вы получаете изменяющееся электрическое поле. На самом деле Максвелл говорил, что электричество и магнетизм — две части одного и того же: электромагнетизм. Зная это, мы можем точно понять, как металл детекторы работа.

Фото: Этот усовершенствованный проходной детектор разработан в Тихоокеанской северо-западной национальной лаборатории использует визуализацию волн для обнаружения пластикового и керамического оружия. не улавливаются обычными металлоискателями. Фото предоставлено Министерством энергетики США.

Как электромагнетизм питает металлоискатель

Различные металлоискатели работают по-разному, но вот наука, стоящая за одним из более простых видов. Металлоискатель содержит моток проволоки (обернутый вокруг круглой головки на конце ручка), известная как передающая катушка. Когда электричество течет через вокруг катушки создается магнитное поле. Когда вы подметаете детектор над землей, вы заставляете магнитное поле двигаться вокруг слишком. Если вы перемещаете металлоискатель над металлическим объектом, движущийся магнитное поле воздействует на атомы внутри металл. На самом деле, это меняет то, как электроны (крошечные частицы «вращаются» вокруг эти атомы) движутся. Теперь, если у нас есть изменяющееся магнитное поле в металл, призрак Джеймса Клерка Максвелла говорит нам, что мы также должны иметь электрический ток движется туда же. Другими словами, металлоискатель. создает (или «индуцирует») некоторую электрическую активность в металле. Но затем Максвелл рассказывает нас интересует еще кое-что: если у нас есть электричество, движущееся в кусок металла, он также должен создавать некоторый магнетизм. Итак, когда вы перемещайте металлоискатель над куском металла, магнитное поле исходящий от детектора, вызывает появление другого магнитного поля вокруг металл.

Работа: Компактный металлоискатель в современном стиле был изобретен Чарльзом Гарреттом в начале 1970-х годов. Вы можете ясно видеть две катушки (которые я покрасил в красный и синий цвета). Коробка (оранжевая) в верхней части рукоятки (зеленая) содержит схему управления, включая батарею (не показана), громкоговоритель (24), переключатель громкости (27), регулятор чувствительности (28) и переключатель включения/выключения ( 29). Эта иллюстрация взята из патента США № 3 662 255 Чарльза Гаррета, выданного в 1972 г. с любезного разрешения Управления по патентам и товарным знакам США.

Именно это второе магнитное поле вокруг металла улавливает детектор. Металлоискатель имеет вторую катушку провода в головке (известную как приемная катушка), которая подключена к цепи, содержащей громкоговоритель. Когда вы перемещаете детектор о над куском металла, магнитное поле, создаваемое металлом, прорезает катушку. Сейчас если вы перемещаете кусок металла через магнитное поле, вы делаете через него течет электричество (помните, так работает генератор). Итак, когда вы перемещаете детектор по металлу, течет электрический ток. через катушку приемника, вызывая щелчок или звуковой сигнал громкоговорителя. Привет вуаля, металлоискатель сработал, и вы что-то нашли! Чем ближе вы перемещаете катушку передатчика к куску металла, тем сильнее магнитное поле, создаваемое в нем катушкой передатчика, тем сильнее магнитное поле, которое металл создает в приемной катушке, тем больше ток, который течет в громкоговоритель, и тем громче шум.

Итак, спасибо, Джеймс Клерк Максвелл, за то, что помог нам понять, как работают металлодетекторы, используя электричество для создания магнетизма, который создает больше электричества где-то еще.

Какие существуют типы металлодетекторов?

Как мы видели выше, магнитные поля создаются изменяющимися электрическими полями, которые колеблются с определенной частотой. частота. Различные частоты дают лучшие или худшие результаты в зависимости от того, металл, который вы ищете, как глубоко в земле вы ищете, из какого материала сделана земля (песок или почва или что-то еще) и так далее.

Хотя все металлоискатели работают примерно одинаково, преобразовывая электричество в магнетизм и обратно. опять же, они бывают трех основных типов. Самые простые подходят для всех видов универсальных металлоискатель и кладоискатель. Они называются детекторами VLF (очень низкая частота) , потому что они используют единая фиксированная частота обнаружения обычно составляет около 6–20 кГц (обычно менее 30 кГц).

Фото: Этот складной миноискатель VLF (Vallon VMW1 армии США) можно использовать на суше или под водой на глубине до 30 м (100 футов). Фотография Кимберли Трамбулл предоставлена ​​армией США, опубликована на Викискладе.

Вы также встретите детекторы PI (импульсная индукция) , которые используют более высокие частоты и импульсные сигналы. Как правило, они могут улавливать предметы глубже в земле, чем детекторы ОНЧ, но они не так разборчивы и не так разборчивы. ничего подобного, как обычно используется. Третий тип известен как детектор FBS (полнополосный спектр) , который одновременно использует несколько частот, поэтому, по сути, это немного похоже на одновременное использование нескольких слегка по-разному настроенных детекторов.

Фото: Разминирование. Этот армейский миноискатель (CyTerra AN/PSS-14) сочетает в себе сверхчувствительный импульсный металлодетектор и георадар (GPR) в одном устройстве. портативный блок. Он может обнаруживать мины с низким содержанием металла и различать металл мины, нерелевантный металлический мусор и почву с высоким содержанием металла. Фотография предоставлена ​​армией США, опубликована на Flickr по лицензии Creative Commons (CC BY 2. 0).

На какую глубину может проникнуть металлоискатель?

Точного ответа на этот вопрос, к сожалению, нет, потому что он зависит от всевозможных факторов, в том числе:

  • Размер, форма и тип закопанного металлического предмета: более крупные предметы легче обнаружить на глубине, чем мелкие.
  • Ориентация объекта: объекты, зарытые горизонтально, как правило, легче найти, чем те, которые закопаны концами вниз, отчасти потому, что это создает большую целевую область, а также потому, что это делает закопанный объект более эффективным при отправке сигнала обратно к детектору. .
  • Возраст объекта: вещи, которые долгое время были закопаны, с большей вероятностью окислились или подверглись коррозии, что затрудняет их поиск.
  • Природа почвы или песка, которые вы ищете.
  • Тип детектора и частота (или частоты), которые он использует.

Вообще говоря, металлоискатели работают на максимальной глубине около 20–50 см (8–20 дюймов).

Где используются металлодетекторы?

Металлоискатели используются не только для поиска монет на пляже. Ты их можно увидеть в проходных сканерах в аэропортах (предназначенных для остановки люди с оружием и ножами в самолеты или в другие безопасные местах, таких как тюрьмы и больницы) и во многих видах научных исследовать. Археологи часто осуждают неподготовленных людей, использующих металл. детекторы для нарушения важных артефактов, но при правильном и С уважением, металлоискатели могут быть ценными инструментами в исторических исследованиях.

Фото: этот металлоискатель стержневого типа, называемый SuperScanner и изготовленный Garrett Metal Detectors, используется для проверки посетителей медицинской клиники в Афганистане. Он работает от встроенной 9-вольтовой батареи, которая обеспечивает около 60 часов непрерывной работы. Если вы найдете металл, детектор сообщит вам об этом комбинацией мигающих светодиодов и трели. Его длина составляет 42 см (16,5 дюйма), а вес — 500 г (17,6 унции). Такие детекторы стоят около 200 долларов (100 фунтов). Фото Кристофера Адмира предоставлено армией США.

Кто изобрел металлоискатели?

Металлоискатели, по-видимому, восходят к расстрелу президента США Джеймса А. Гарфилда в июле 1881 года. Одна из пуль, направленных в президента, застряла внутри его тела, и ее не удалось найти. Пионер телефонии Александр Грэм Белл быстро собрал электромагнитное устройство для обнаружения металла, названное индукционными весами, основанное на более раннем изобретении немецкого физика Генриха Вильгельма Дава. Хотя пуля не была найдена, а президент позже умер, устройство Белла работало правильно, и многие люди считают его самым первым электромагнитным локатором металла.

Рисунок: Слева: Найдите пулю! На этом зарисовке Уильяма А. Скинкла из иллюстрированной газеты Фрэнка Лесли от 20 августа 1881 г. показано довольно много врачей (!) использующих индукционные весы Белла, чтобы найти пулю, затерявшуюся в теле президента. В комнате слева находится оборудование на столешнице, которое помечено как «прерыватель», «конденсатор» и «батарея» (коробки в задней части стола). Вы можете просто разглядеть провода, которые тянутся от нижней части изображения к кровати президента справа. Предположительно Александр Грэм Белл — это бородатый мужчина, разговаривающий по телефону справа? С разрешения Библиотеки Конгресса США.

Портативные металлоискатели были изобретены инженером-электронщиком немецкого происхождения Герхардом Фишером (которое он также называл «Фишер»), когда жил в Соединенных Штатах, и в январе 1933 года он подал заявку на патент на эту идею. Он назвал свое изобретение Металлоскопом. — «метод и средства для указания наличия закопанных металлов, таких как руда, трубы и т. п.» — и вы можете видеть это на рисунке здесь. В том же году он основал исследовательскую лабораторию Fisher, которая и по сей день остается ведущим производителем металлоискателей. Доктор Чарльз Л. Гарретт, основатель Garrett Electronics, первым изобрел современные электронные металлодетекторы в начале 19 века.70-е годы. После работы в НАСА над программой посадки на Луну «Аполлон» Гарретт обратил внимание на свое хобби — любительскую охоту за сокровищами — и его компания произвела революцию в этой области, представив ряд инноваций, в том числе первый компьютеризированный металлоискатель с цифровой обработкой сигнала, запатентованный в 1987 году.

Произведение: Металлоскоп, запатентованный Герхардом Фишером (Fisher) в 1937 году, который я раскрасил, чтобы за ним было легче следить. Катушка передатчика находится в красной рамке спереди; катушка приемника находится в синей коробке сзади. Передатчик использует неслышимые сигналы частотой 30 000 Гц; приемник посылает звуковые сигналы (с частотой около 500 Гц) в наушники, как в современном металлоискателе. Катушки передатчика и приемника установлены под прямым углом друг к другу, поэтому приемник не принимает сигналы непосредственно от передатчика. Работа предоставлена ​​Управлением по патентам и товарным знакам США.

Как насчет

неметаллических детекторов ?

Охотники за сокровищами всегда будут ценить подобные металлоискатели, потому что исторически ценные вещи обычно делались из металла. Но в мире безопасности уже недостаточно полагаться на металлодетекторы как на нашу единственную линию. защита. Люди, которым нравится проносить оружие контрабандой через охрану, например, хорошо осведомлены что им придется пройти через металлоискатели, и они, вероятно, попробуют альтернативы, такие как керамика, ножи из пластика или углеродного волокна. Хотя уважаемые производители прилагают все усилия, чтобы обеспечить наличие мелких металлических деталей в рукояти «неметаллических» ножей, именно по этой причине ничто не мешает наточить кусок пластмассы до импровизируйте нож, как неоднократно делала полиция найденный. Как же тогда мы обнаруживаем неметаллические угрозы?

Одним из решений, принятых в аэропортах, является использование сканеров миллиметрового диапазона (MMS) для обнаружения металлических и неметаллических объектов. По сути, они работают как более безопасные версии рентгеновских аппаратов: волны проходят через одежду, но отражаются нашими телами, а любое спрятанное оружие (металлическое или иное) отображается в виде картинок на экране. Рентгеновские аппараты используют очень мощное излучение (с длиной волны примерно в нанометры или миллиардные доли метра), которое может быть опасным, если ваше тело поглощает слишком много излучения. Как следует из их названия, сканеры миллиметрового диапазона используют гораздо более длинные волны размером 1–10 мм (примерно в 10 раз меньше, чем микроволны, отправляемые и принимаемые мобильными телефонами), которые составляют значительно ниже по интенсивности, а значит и поза небольшой или нулевой риск для здоровья людей.

Узнайте больше

На этом сайте

  • Электричество
  • Магнетизм
  • Металлы
  • Рентгеновские лучи

На других веб-сайтах

  • Свод практических правил ответственного поиска металлов. Несмотря на то, что приведенные здесь разумные рекомендации написаны для Великобритании, они применимы в большей степени и в других странах, но обязательно узнайте о законах или правилах, применимых конкретно к вашему региону. .
  • Обнаружение предметов, спрятанных на человеке или внутри тела: краткий обзор некоторых передовых технологий обнаружения, разработанных Национальным институтом юстиции США, включая радар миллиметрового диапазона (ммВт) и ультразвук.
  • Глава 3: Обнаружение металлов. Этот полезный (хотя и немного устаревший) обзор 1999 года взят из отчета Министерства юстиции США «Надлежащее и эффективное использование технологий безопасности в школах США». -металлодетекторы и рентгеновские сканеры багажа. [Архивировано через Wayback Machine]

Книги

  • Библия металлоискателя: полезные советы, советы экспертов и секреты инсайдеров для поиска спрятанных сокровищ, Брэндон Нейс. Улисс Пресс, 2016.
  • Обнаружение металлов и археология Сьюзи Томас, Питер Стоун. Издательство Гринлайт, 2012.
  • Руководство для начинающих по поиску металлов Джулиана Эван-Харта и Дэйва Стаки. Издательство Гринлайт, 2012.
  • «Городской охотник за сокровищами: практическое руководство для начинающих» Майкла Чаплана. Square One Publishers, Inc., 2005.
  • Расширенный справочник по современным металлодетекторам Чарльза Гарретта. Ram Publishing, 1985. Старая книга, но достойная внимания, так как она написана самим Чарльзом Гарреттом.

Товары

  • Металлодетекторы – норма в школах и на стадионах. Капитолии штатов? «Не так много» Алана Блиндера. The New York Times, 14 апреля 2018 г. Сканирование системы безопасности вовсе не так распространено, как вы думаете.
  • Радость поиска металла — это не только сокровище Дейва Криспа. The Guardian, 29 августа., 2014. Металлоискатель связывает людей с прошлым, утверждает один энтузиаст.
  • Робот берет на себя поиск наземных мин, пока люди остаются очень-очень далеко, Эван Акерман. IEEE Spectrum, 23 января 2014 г. Краткий обзор робота, который может находить мины с помощью георадара и металлоискателя.
  • Археология и поиск металлов, Алекс Хант. BBC News, 17 февраля 2011 г. Могут ли профессиональные археологи и любители металлодетекторов работать бок о бок?
  • [PDF] Система обнаружения мин AN/PSS-14 предлагает улучшенные противоминные возможности, Келлин Д. Риттер, US Army AL&T, январь-март 2007 г. Интересная статья о разработке комбинированного металлодетектора AN/PSS-14 и георадара выше.

Патенты

Если вас интересуют технические детали, ознакомьтесь со следующими патентами:

  • Патент США 2 066 561: Металлоскоп Герхарда Р. Фишера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *